Year 6 Maths Homework

Name Class

1.
$$\frac{6}{7}$$
 x 840 = _____

- 3. How many days are there in 15 weeks? _____
- $= 600 8 \times 7$ 4.
- ÷ 6 = 9 5.
- $\frac{3}{9}$ of a number is 15. What was the number?
- 7. 7200 ÷ 9 =
- 8. Write the equivalent fractions, decimals and percentages

$$\frac{1}{4} =$$
_____ = ____%

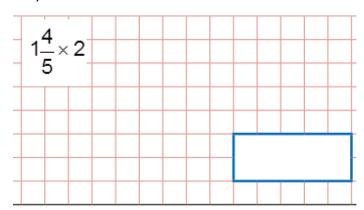
$$-=$$
 ____ = 5% $\frac{1}{4}$ = ____ = ___ % $\frac{3}{4}$ = ____ = ___ %

$$\frac{7}{20} =$$
_____ = ____%

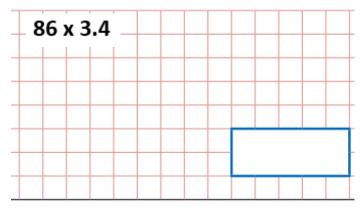
$$\frac{1}{5} =$$
_____ = ____%

$$\frac{7}{20} =$$
____ = ___ % $\frac{1}{5} =$ ____ = ___ % $0.7 = \frac{7}{10} = \frac{7}{100} = \frac{1000}{1000}$

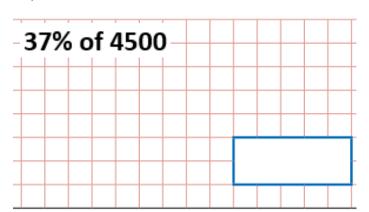
- 9. Find the **mean** of these numbers_____
 - 26
- 14
- 13
- 19

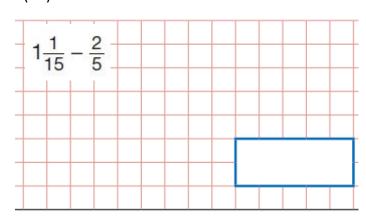

- 8
- 10. I think of a number. I multiply it by 7 and add 5. My answer is 68.

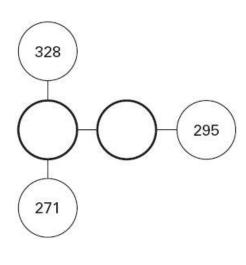
Which number did I start with?

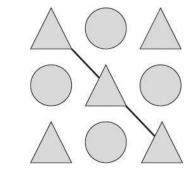

- 11. Six paper clips have a mass of 72g. What is the mass of **five** paper clips? ______
- 12. Each side of a regular hexagon is 14cm long. What is the perimeter of the hexagon?
- 13. What is $6^2 2^3 =$
- 14. 40 ÷ 1000 = _____
- 15. What are the factors of 36? _____
- 16. Write **three** prime numbers between 40 and 50 = _____, _____&____
- 56 ÷ 17. = 7

x 12


21)

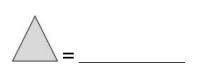

(22)

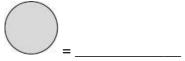

23)


(24)

25) The three numbers on **each line** add up to **763** Write in the missing numbers.

(26)




Each shape stands for a number.

The total of the shapes on the diagonal line is 48

The total of all the shapes is 200

Calculate the value of each shape.

27) Optional Extension – Cross Out Two

8	9	5	2
3	9	7	5
4	6	2	8
9	8	5	6

Cross out two of the numbers so that all the rows and columns add up to multiples of **4**.

2	7	8	4
5	9	1	3
4	6	5	2
4	5	6	8

Cross out two of the numbers so that all the rows and columns add up to multiples of **3**.